EE 435

Lecture 29

Data Converters

- Spectral Performance
- Windowing
- Quantization Noise

INL Often Not a Good Measure of Linearity

Four identical INL with dramatically different linearity

Distortion Analysis

How are spectral components determined?

By integral

$$
A_{k}=\frac{1}{\omega T}\left(\int_{t_{1}}^{t_{1}+T} f(t) e^{-j k \omega t} d t+\int_{t_{1}}^{t_{1}+T} f(t) e^{j k \omega t} d t\right)
$$

$a_{k}=\frac{2}{\omega T} \int_{t_{1}}^{t_{1}+T} f(t) \sin (k t \omega) d t \quad b_{k}=\frac{2}{\omega T} \int_{t_{1}}^{t_{1}+T} f(t) \cos (k t \omega) d t$
Integral is very time consuming, particularly if large number of components are required
By DFT (with some restrictions that will be discussed)

By FFT (special computational method for obtaining DFT)

Why is this a Key Theorem?

THEOREM: Consider a periodic signal with period $\mathrm{T}=1 / \mathrm{f}$ and sampling period $T_{S}=1 / f_{S}$. If N_{P} is an integer, $x(t)$ is band limited to $f_{\text {max }}$, and $f_{s}>2 f_{\text {max }}$, then

$$
\left|\mathrm{A}_{\mathrm{m}}\right|=\frac{2}{\mathrm{~N}}\left|\mathrm{X}\left(\mathrm{mN}_{\mathrm{P}}+1\right)\right| \quad 0 \leq \mathrm{m} \leq \mathrm{h}-1
$$

and $\quad X(k)=0 \quad$ for all k not defined above
where $\langle\mathrm{X}(\mathrm{k})\rangle_{\mathrm{k}=0}^{\mathrm{N}-1}$ is the DFT of the sequence $\left\langle\mathrm{x}\left(\mathrm{kT}_{\mathrm{S}}\right)\right\rangle_{\mathrm{k}=0}^{\mathrm{N}-1}$
$<A_{k}>$ are the Fourier Series Coefficients, $N=$ number of samples, N_{p} is the number of periods, and $h=\operatorname{lnt}\left(\frac{f_{\text {MAX }}}{f}-\frac{1}{N_{p}}\right)$

- DFT requires dramatically less computation time than the integrals for obtaining Fourier Series coefficients
- Can easily determine the sampling rate (often termed the Nyquist rate) to satisfy the band limited part of the theorem
- If "signal" is output of a system (e.g. ADC or DAC), $f_{\text {mAX }}$ is independent of f

THEOREM: Consider a periodic signal with period $\mathrm{T}=1 / \mathrm{f}$ and sampling period $T_{S}=1 / f_{S}$. If N_{P} is an integer, $x(t)$ is band limited to $f_{\text {MAX }}$, and $f_{s}>2 f_{\text {max }}$, then

$$
\left|\mathrm{A}_{\mathrm{m}}\right|=\frac{2}{\mathrm{~N}}\left|\mathrm{X}\left(\mathrm{mN}_{\mathrm{P}}+1\right)\right| \quad 0 \leq \mathrm{m} \leq \mathrm{h}-1
$$

and $\quad \mathrm{X}(\mathrm{k})=0 \quad$ for all k not defined above
where $\langle\mathrm{X}(\mathrm{k})\rangle_{\mathrm{k}=0}^{\mathrm{N}-1}$ is the DFT of the sequence $\left\langle\mathrm{x}\left(\mathrm{kT} \mathrm{T}_{\mathrm{S}}\right)\right\rangle_{\mathrm{k}=0}^{\mathrm{N}-1}$
$<A_{k}>$ are the Fourier Series Coefficients, $N=$ number of samples, N_{p} is the number of periods, and $h=\operatorname{lnt}\left(\frac{f_{\text {max }}}{f}-\frac{1}{N_{P}}\right)$

- Much evidence of engineers attempting to use the theorem when N_{p} is not an integer
- Challenging to have N_{P} an integer in practical applications
- Dramatic errors can result if there are not exactly an integer number of periods in the sampling window

Distortion Analysis

If the hypothesis of the theorem are satisfied, we thus have

Review from last lecture .• • • • •
 Considerations for Spectral Characterization

-Tool Validation
-DFT Length and NP
-Importance of Satisfying Hypothesis
-Windowing

Considerations for Spectral Characterization

- Tool Validation
- DFT Length and NP
- Importance of Satisfying Hypothesis
- NP is an integer
- Band-limited excitation
- Windowing

Considerations for Spectral Characterization

- Tool Validation
- DFT Length and NP
- Importance of Satisfying Hypothesis
- NP is an integer
- Band-limited excitation
- Windowing

DFT Examples

Recall the theorem that provided for the relationship between the DFT terms and the Fourier Series Coefficients required

The sampling window must be an integral number of periods
2. $N>\frac{2 f_{\max }}{f_{\text {SIGNAL }}} N_{P}$

Example

WLOG assume $\mathrm{f}_{\mathrm{SIG}}=50 \mathrm{~Hz}$
$V_{\mathrm{IN}}=\sin (\omega \mathrm{t})+0.5 \sin (2 \omega \mathrm{t})$
$\omega=2 \pi f_{\mathrm{SIG}}$

Consider $N_{P}=20.2 \quad \mathrm{~N}=4096$

Recall $20 \log _{10}(0.5)=-6.0205999$

Input Waveform

Input Waveform

Input Waveform

Input Waveform

Spectral Response

Fundamental will appear at position $1+\mathrm{Np}=21$
Columns 1 through 7
$-35.0366-35.0125-34.9400-34.8182-34.6458-34.4208-34.1403$
Columns 8 through 14
$-33.8005-33.3963-32.9206-32.3642-31.7144-30.9535-30.0563$
Columns 15 through 21
$-28.9855-27.6830-26.0523-23.9155-20.8888-15.8561 \quad-0.5309$
Columns 22 through 28
-12.8167 -20.1124 -24.2085 -27.1229 -29.4104 $-31.2957-32.8782$
Columns 29 through 35
$-34.1902-35.2163-35.9043-36.1838-35.9965-35.3255-34.1946$
Note there is a dramatic increase in the noise floor and a significant change in and spreading of the fundamental!!

Columns 36 through 42
$-32.6350-30.6397-28.1125-24.7689-19.7626 \quad-8.5639-11.7825$
Columns 43 through 49
$-20.0158-23.9648-26.5412-28.4370-29.9279-31.1519-32.1874$
Columns 50 through 56
$-33.0833-33.8720-34.5759-35.2113-35.7902-36.3218-36.8133$
Columns 57 through 63
$-37.2703-37.6974-38.0984-38.4762-38.8336-39.1725-39.4949$
Columns 64 through 70
$-39.8024-40.0963-40.3778-40.6479-40.9076-41.1576-41.3987$

Columns 36 through 42
$-32.6350-30.6397-28.1125-24.7689-19.7626 \quad-8.5639-11.7825$
Columns 43 through 49
$-20.0158-23.9648-26.5412-28.4370-29.9279-31.1519-32.1874$
Columns 50 through 56
$-33.0833-33.8720-34.5759-35.2113-35.7902-36.3218-36.8133$
Columns 57 through 63
$-37.2703-37.6974-38.0984-38.4762-38.8336-39.1725-39.4949$
Columns 64 through 70
$-39.8024-40.0963-40.3778-40.6479-40.9076-41.1576-41.3987$

Observations

- Modest change in sampling window of 0.2 out of 20 periods (1\%) results in a big error in both fundamental and harmonic
- More importantly, dramatic raise in the noise floor !!! (from over -300dB to only 12dB)

Example

WLOG assume $\mathrm{f}_{\text {SIG }}=50 \mathrm{~Hz}$

$\mathrm{V}_{\mathrm{IN}}=\sin (\omega \mathrm{t})+0.5 \sin (2 \omega \mathrm{t})$ $\omega=2 \pi f_{\text {SIG }}$

Consider $\mathrm{N}_{\mathrm{P}}=20.01 \mathrm{~N}=4096$

Deviation from hypothesis is $.05 \%$ of the sampling window

Input Waveform

Input Waveform

Input Waveform

Input Waveform

Spectral Response with Non-Coherent Sampling

(zoomed in around fundamental)

Fundamental will appear at position $1+N p=21$

Columns 1 through 7
$-89.8679-83.0583-77.7239-74.2607-71.6830-69.5948$-67.8044
Columns 8 through 14
$-66.2037-64.7240-63.3167-61.9435-60.5707-59.1642-57.6859$
Columns 15 through 21
$\begin{array}{llllllll}-56.0866 & -54.2966 & -52.2035 & -49.6015 & -46.0326 & -40.0441 & -0.0007\end{array}$
Columns 22 through 28
$-40.0162-46.2516-50.0399-52.8973-55.3185-57.5543-59.7864$

Columns 29 through 35
$-62.2078-65.1175-69.1845-76.9560-81.1539-69.6230-64.0636$

$k^{\text {th }}$ harmonic will appear at position 1+k•Np

Columns 36 through 42
$-59.9172-56.1859-52.3380-47.7624-40.9389\left[\begin{array}{llllll}-6.0401 & -39.2033\end{array}\right.$

Observations

- Modest change in sampling window of 0.01 out of 20 periods (.05\%) still results in a modest error in both fundamental and harmonic
- More importantly, substantial raise in the computational noise floor !!! (from over 300 dB to only -40 dB)
- Errors at about the 6-bit level !

Example

WLOG assume $\mathrm{f}_{\text {SIG }}=50 \mathrm{~Hz}$

$\mathrm{V}_{\mathrm{IN}}=\sin (\omega \mathrm{t})+0.5 \sin (2 \omega \mathrm{t})$ $\omega=2 \pi f_{\text {SIG }}$

Consider $N_{P}=20.001 \mathrm{~N}=4096$

Deviation from hypothesis is $.005 \%$ of the sampling window

Spectral Response with Non-coherent Sampling

(zoomed in around fundamental)

Fundamental will appear at position $1+N p=21$

Columns 1 through 7
$-112.2531-103.4507-97.8283-94.3021-91.7015-89.6024-87.8059$
Columns 8 through 14
$-86.2014-84.7190-83.3097-81.9349-80.5605-79.1526-77.6726$
Columns 15 through 21

Columns 22 through 28
$-60.0947-66.2917-70.0681-72.9207-75.3402-77.5767-79.8121$
Columns 29 through 35
$-82.2405-85.1651-89.2710-97.2462-101.0487-89.5195-83.9851$
$k^{\text {th }}$ harmonic will appear at position $1+k \cdot N p$

Columns 36 through 42
$-79.8472-76.1160-72.2601-67.6621-60.7642 \quad-6.0220-59.3448$
Columns 43 through 49
-64.8177 -67.8520 -69.9156-71.4625-72.6918 -73.7078 -74.5718
Columns 50 through 56
-75.3225-75.9857 -76.5796-77.1173 -77.6087 -78.0613 -78.4809
Columns 57 through 63
$\begin{array}{llllllll}-78.8721 & -79.2387 & -79.5837 & -79.9096 & -80.2186 & -80.5125 & -80.7927\end{array}$

Observations

- Modest change in sampling window of 0.001 out of 20 periods (.005\%) results in a small error in both fundamental and harmonic
- More importantly, substantial raise in the computational noise floor !!! (from over 300 dB to only -60 dB)
- Errors at about the 10-bit level !

Spectral Response with Non-coherent sampling

(zoomed in around fundamental)

Fundamental will appear at position $1+N p=21$

Columns 1 through 7
$-130.4427-123.1634-117.7467-114.2649-111.6804-109.5888-107.7965$
Columns 8 through 14
$-106.1944-104.7137-103.3055-101.9314-100.5575-99.1499-97.6702$
Columns 15 through 21
$\begin{array}{llllllll} & -96.0691 & -94.2764 & -92.1793 & -89.5706 & -85.9878 & -79.9571 & 0.0000\end{array}$
Columns 22 through 28
$-80.1027-86.2959-90.0712-92.9232-95.3425-97.5788$-99.8141

Columns 29 through 35
$-102.2424-105.1665-109.2693-117.2013-120.8396-109.4934-103.9724$
$k^{\text {th }}$ harmonic will appear at position $1+k \cdot N p$

Columns 36 through 42
$\begin{array}{llllllll}-99.8382 & -96.1082 & -92.2521 & -87.6522 & -80.7470 & -6.0207 & -79.3595\end{array}$
Columns 43 through 49
$-84.8247-87.8566-89.9190-91.4652-92.6940-93.7098-94.5736$
Columns 50 through 56
-95.3241 -95.9872 -96.5810 -97.1187 -97.6100 -98.0625 -98.4821
Columns 57 through 63
-98.8732 -99.2398 $-99.5847-99.9107-100.2197-100.5135-100.7937$
Columns 64 through 70

Observations

- Modest change in sampling window of 0.0001 out of 20 periods (.0005\%) results in a small error in both fundamental and harmonic
- More importantly, substantial raise in the computational noise floor !!! (from over 300 dB to only -80 dB)
- Errors at about the 13-bit level !

DFT Examples

Recall the theorem that provided for the relationship between the DFT terms and the Fourier Series Coefficients required

1. The sampling window be an integral number of periods
2.

$$
\mathrm{N}>\frac{2 \mathrm{f}_{\max }}{\mathrm{f}_{\text {SIGNAL }}} \mathrm{N}_{\mathrm{P}}
$$

Example $N<\frac{2 f_{\max }}{f_{S I G N A L}} N_{P} \quad \underset{\text { (Notuirement) }}{\text { (Neeting Nyquist sampling rate }}$

If $\mathrm{f}_{\mathrm{SIG}}=50 \mathrm{~Hz}$

and $N_{P}=20 \quad N=512$

$$
N<\frac{2 f_{\max }}{f_{S I G N A L}} N_{P}
$$

$\mathrm{f}_{\max }<640 \mathrm{~Hz}$

Example $\quad N<\frac{2 f_{\max }}{f_{\text {SIGNAL }}} N_{P}$
(Not meeting Nyquist sampling rate requirement)

Consider $\mathrm{N}_{\mathrm{P}}=20 \mathrm{~N}=512$
If $\mathrm{f}_{\text {SIG }}=50 \mathrm{~Hz}$ but an additional input at 700 Hz is present

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{P}}=\frac{\mathrm{NT}_{\mathrm{S}}}{\mathrm{~T}} \quad \leftrightarrow \quad f_{\text {SAMP }}=f_{\text {SIGNAL }} \frac{N}{N_{P}} \quad f_{\text {SAMP }}=1.280 \mathrm{KHz} \\
& \mathrm{~V}_{\mathrm{IN}}=\sin (\omega \mathrm{t})+0.5 \sin (2 \omega \mathrm{t})+0.5 \sin (14 \omega \mathrm{t}) \\
& \omega=2 \pi f_{\mathrm{SIG}}
\end{aligned}
$$

(i.e. the component at 700 Hz which violates the band limit requirement - Nyquist rate for the 700 Hz input is 1.4 KHz)

$$
\text { Recall } \quad 20 \log _{10}(0.5)=-6.0205999
$$

Effects of High-Frequency Spectral Components

Effects of High-Frequency Spectral Components

Effects of High-Frequency Spectral Components

Effects of High-Frequency Spectral Components

$$
f_{\text {high }}=14 \mathrm{fo}
$$

Columns 1 through 7
-296.9507-311.9710-302.4715-302.1545-310.8392-304.5465-293.9310
Columns 8 through 14
-299.0778-292.3045-297.0529-301.4639-297.3332-309.6947-308.2308
Columns 15 through 21
$-297.3710-316.5113-293.5661-294.4045-293.6881-292.6872-0.0000$
Columns 22 through 28
-301.6889-288.4812-292.5621-292.5853-294.1383-296.4034-289.5216
Columns 29 through 35
$-285.9204-292.1676-289.0633-292.1318-290.6342-293.2538-296.8434$

Effects of High-Frequency Spectral Components
 $$
\mathrm{f}_{\text {high }}=14 \mathrm{fo}
$$

Columns 36 through 42
$-301.7087-307.2119-295.1726-303.4403-301.6427 \mid-6.0206-295.3018$
Columns 43 through 49
$-298.9215-309.4829-306.7363-293.0808-300.0882-306.5530-302.9962$
Columns 50 through 56
$-318.4706-294.8956-304.4663-300.8919-298.7732-301.2474-293.3188$

Effects of High-Frequency Spectral Components

Aliased components at

$$
f_{\text {alias }}=f_{\text {sample }}-f
$$

$$
f_{\text {alias }}=25.6 f_{s i g}-14 f_{\text {sig }}=11.6 f_{\text {sig }}
$$

thus position in sequence $=1+N_{p} \frac{f_{\text {alias }}}{f_{\text {sig }}}=1+20 \bullet 11.6=233$
Columns 225 through 231
$-296.8883-292.8175-295.8882-286.7494-300.3477-284.4253-282.7639$
Columns 232 through 238
$-273.9840-6.0206-274.2295-284.4608-283.5228-297.6724-291.7545$
Columns 239 through 245
$-299.1299-305.8361-295.1772-295.1670-300.2698-293.6406-304.2886$
Columns 246 through 252
$-302.0233-306.6100-297.7242-305.4513-300.4242-298.1795-299.0956$

Effects of High-Frequency Spectral Components

Effects of High-Frequency Spectral Components

Effects of High-Frequency Spectral Components

(zoomed in around fundamental)

Effects of High-Frequency Spectral Components

Effects of High-Frequency Spectral Components

Observations

- Aliasing will occur if the band-limited part of the hypothesis for using the DFT is not satisfied
- Modest aliasing will cause high frequency components that may or may not appear at a harmonic frequency
- More egregious aliasing can introduce components near or on top of fundamental and lower-order harmonics
- Important to avoid aliasing if the DFT is used for spectral characterization

Review Questions

Q1: How many DFT terms are there if the sample window is of length 4096 ?
A: 4096
Q2: When the magnitude of the DFT coefficients are plotted, the horizontal axis is an index axis (i.e. dimensionless) but often the index terms are labeled as frequency terms. If the sampling frequency is f_{s} and N samples are taken, what is the frequency of the first DFT term? What is the frequency of the $2^{\text {nd }}$ DFT term?

$$
A: 0 \mathrm{~Hz} \quad \mathrm{~A}: \mathrm{fs} / \mathrm{N}
$$

Q3: If samples of the time-domain signal are made over exactly 31 periods, which index term corresponds to the fundamental? To the second harmonic?

A: $32^{\text {nd }}$ term \quad A: $63^{\text {rd }}$ term
Q4: What is the difference between the DFT and the FFT?
A: FFT is a computationally efficient method of computing the DFT
Q5: True or False: The DFT terms are real numbers.
A: False We are, however, often interested most in the magnitude of the DFT terms and these are real
Q6: True or False: The magnitude of the DFT terms are symmetric around index number $\mathrm{N} / 2$.

A: Yes

Considerations for Spectral Characterization

- Tool Validation
- DFT Length and NP
- Importance of Satisfying Hypothesis
- NP is an integer
- Band-limited excitation
- Windowing

Considerations for Spectral Characterization

- Tool Validation
- DFT Length and NP
- Importance of Satisfying Hypothesis
- NP is an integer
- Band-limited excitation
- Windowing

Are there any strategies to address the problem of requiring precisely an integral number of periods to use the FFT?

Windowing is sometimes used

Windowing is sometimes misused

Windowing

Windowing is the weighting of the time domain function to maintain continuity at the end points of the sample window

Well-studied window functions:

- Rectangular (also with appended zeros)
- Triangular
- Hamming
- Hanning
- Blackman

Recall

Input Waveform

Input Waveform

Rectangular Window

Sometimes termed a boxcar window
Uniform weight
Can append zeros
Without appending zeros equivalent to no window

Rectangular Window

Assume $\mathrm{f}_{\text {SIG }}=50 \mathrm{~Hz}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=\sin (\omega \mathrm{t})+0.5 \sin (2 \omega \mathrm{t}) \\
& \omega=2 \pi \mathrm{f}_{\mathrm{SIG}}
\end{aligned}
$$

Consider $\mathrm{N}_{\mathrm{P}}=20.1 \mathrm{~N}=512$

Rectangular Window

Spectral Response with Non-coherent sampling

(zoomed in around fundamental)

Rectangular Window (with appended zeros)

Rectangular Window

Columns 1 through 7
$-48.8444-48.7188-48.3569-47.7963-47.0835-46.2613-45.3620$
Columns 8 through 14
$-44.4065-43.4052-42.3602-41.2670-40.1146-38.8851-37.5520$
Columns 15 through 21
$-36.0756-34.3940-32.4043-29.9158-26.5087-20.9064-0.1352$
Columns 22 through 28
$-19.3242-25.9731-29.8688-32.7423-35.1205-37.2500-39.2831$
Columns 29 through 35
$-41.3375-43.5152-45.8626-48.0945-48.8606-46.9417-43.7344$

Rectangular Window

Columns 1 through 7
$-48.8444-48.7188-48.3569-47.7963-47.0835-46.2613-45.3620$
Columns 8 through 14
$-44.4065-43.4052-42.3602-41.2670-40.1146-38.8851-37.5520$
Columns 15 through 21
$\begin{array}{lllllll}-36.0756 & -34.3940 & -32.4043 & 29.9158 & -26.5087 & -20.9064 & -0.1352\end{array}$
Columns 22 through 28
$-19.3242-25.9731-29.8688-32.7423-35.1205-37.2500-39.2831$
Columns 29 through 35
-41.3375-43.5152 -45.8626-48.0945 -48.8606 -46.9417 -43.7344
Energy spread over several frequency components

Triangular Window

Triangular Window

Triangular Window $N=512 \quad N p=20.1$

Spectral Response with Non-Coherent Sampling and Windowing

(zoomed in around fundamental)

Triangular Window

Triangular Window

Columns 1 through 7
$-100.8530-72.0528-99.1401-68.0110-95.8741-63.9944-92.5170$
Columns 8 through 14
$-60.3216-88.7000-56.7717-85.8679-52.8256-82.1689-48.3134$
Columns 15 through 21
$-77.0594-42.4247-70.3128-33.7318-58.8762-15.7333-6.0918$
Colt
Note: Magnitude of the fundamental has been reduced but the
-12. skirting effects have also been reduced.
Colt Note: Windowing has reduced energy in the signal but also made transition at end-point of sampling window continuous when
-77 . creating a periodic waveform

Hamming Window

Hamming Window

Spectral Response with Non-Coherent Sampling and Windowing

(zoomed in around fundamental)

Comparison with Rectangular Window

Note: Vertical axis are different

Hamming Window

Columns 1 through 7
$-70.8278-70.6955-70.3703-69.8555-69.1502-68.3632-67.5133$
Columns 8 through 14
$-66.5945-65.6321-64.6276-63.6635-62.6204-61.5590-60.4199$
Columns 15 through 21
$-59.3204-58.3582-57.8735-60.2994-52.6273-14.4702(-5.4343$
Columns 22 through 28
$-11.2659-45.2190-67.9926-60.1662-60.1710-61.2796-62.7277$
Columns 29 through 35
-64.3642 -66.2048 -68.2460 -70.1835 -71.1529 -70.2800 -68.1145

Hanning Window

Hanning Window

Spectral Response with Non-Coherent Sampling and Windowing

(zoomed in around fundamental)

Comparison with Rectangular Window

Note: Vertical axis are different

Hanning Window

Columns 1 through 7
$-107.3123-106.7939-105.3421-101.9488-98.3043-96.6522-93.0343$
Columns 8 through 14
$-92.4519-90.4372-87.7977-84.9554-81.8956-79.3520-75.8944$
Columns 15 through 21
$-72.0479-67.4602-61.7543-54.2042-42.9597-13.4511-6.0601$
Columns 22 through 28
$-10.8267-40.4480-53.3906-61.8561-68.3601-73.9966-79.0757$

Columns 29 through 35
-84.4318 -92.7280 -99.4046-89.0799 -83.4211 -78.5955 -73.9788

Comparison of 4 windows

Comparison of 4 windows

But windows can make things worse too!

Consider situation where we really do have coherent sampling and a window is applied

$$
\begin{aligned}
& \mathrm{fsig} 1=50 \mathrm{~Hz} \\
& \mathrm{fsig} 2=100 \mathrm{~Hz} \\
& \mathrm{~N}=512 \\
& \mathrm{~Np}=20
\end{aligned}
$$

Comparison of 4 windows when sampling hypothesis are satisfied

Comparison of 4 windows

But windows can make things worse too!

Consider situation where we really do have coherent sampling and a window is applied

$$
\begin{aligned}
& \text { fsig } 1=50 \mathrm{~Hz} \\
& \text { fsig2 }=100 \mathrm{~Hz} \\
& \mathrm{~N}=512 \\
& \mathrm{~Np}=20
\end{aligned}
$$

And we do not really know how much worse thing can be!

Be careful about interpreting results obtained by using windowing to mitigate the non-coherent sampling problem!

Remember the hypothesis of the theorem relating the DFT, which is easy to calculate, to the Fourier Series coefficients!

Preliminary Observations about Windows

- Provide separation of spectral components
- Energy can be accumulated around spectral components
- Simple to apply
- Some windows work much better than others

But - windows do not provide dramatic improvement and can significantly degrade performance if sampling hypothesis are met

Issues of Concern for Spectral Analysis

An integral number of periods is critical for spectral analysis
Not easy to satisfy this requirement in the laboratory
Windowing can help but can hurt as well
Out of band energy can be reflected back into bands of interest
Characterization of CAD tool environment is essential
Spectral Characterization of high-resolution data converters requires particularly critical consideration to avoid simulations or measurements from masking real performance

Spectral Characterization of Data Converters

- Distortion Analysis

Time Quantization Effects

- of DACs
- of ADCs
- Amplitude Quantization Effects
- of DACs
- of ADCs

Quantization Effects on Spectral Performance and Noise Floor in DFT

- Assume the effective clock rate (for either an ADC or a DAC) is arbitrarily fast
- Without Loss of Generality it will be assumed that $\mathrm{f}_{\mathrm{SIG}}=50 \mathrm{~Hz}$
- Index on DFT will be listed in terms of frequency (rather than index number)

Matlab File: afft_Quantization.m

Quantization Effects

res $=4$ bits $\quad N_{P}=25$

Quantization Effects

res $=4$ bits $\quad N_{P}=25$

Quantization Effects

res $=4 b i t s$

Quantization Effects

Res $=4$ bits

Quantization Effects

Res = 4 bits

Axis of Symmetry

Quantization Effects

Res $=4$ bits

Some components very small

Quantization Effects
 Res $=4$ bits

Quantization Effects

Res = 4 bits

Quantization Effects

Res $=4$ bits

Quantization Effects
 Res $=4$ bits

Quantization Effects
 Res $=4$ bits

Quantization Effects
 Res $=4$ bits

Fundamental

Quantization Effects

Res = 10 bits

Quantization Effects

Res = 10 bits
Rect. Window $N=16384 \quad N p=23$

Quantization Effects

Res = 10 bits

Quantization Effects

Res $=10$ bits

With Vin=2vpp

Quantization Effects

Res $=10$ bits

Quantization Effects

Res $=10$ bits

Spectral Characterization of Data Converters

- Distortion Analysis

Time Quantization Effects

- of DACs
- of ADCs
- Amplitude Quantization Effects
- of DACs
- of ADCs

Spectral Characteristics of DAC

Periodic Input Signal

 Sampling Clock

Sampled Input Signal (showing time points where samples taken)

Spectral Characteristics of DAC

Quantization
Levels

Quantized Sampled Input Signal (with zero-order sample and hold)

Spectral Characteristics of DAC

$\mathrm{T}_{\text {CLOCK }} \longrightarrow \mid-$
 Sampling Clock
$\xrightarrow[\text { DFT CLOCK }]{\longrightarrow}$
DFT Clock

Spectral Characteristics of DAC

 Sampling Clock
$\xrightarrow[\text { DFT CLOCK }]{\longrightarrow} \mathrm{H} \longleftarrow$
DFT Clock

Spectral Characteristics of DAC

Spectral Characteristics of DAC

DFT Simulation from Matlab

Rec Win $N=65536 \mathrm{~Np}=1$ Nsam $=284.93913$ nres $=12 \mathrm{fCL} / \mathrm{fsig}=10 \mathrm{fDFT} / \mathrm{fsig}=2849.3913$

Summary of time and amplitude quantization assessment

Time and amplitude quantization do not introduce harmonic distortion

Time and amplitude quantization do increase the noise floor

Stay Safe and Stay Healthy !

End of Lecture 29

